18.152 PROBLEM SET 5 due April 29th 10:00 am.

You can collaborate with other students when working on problems. However, you should write the solutions using your own words and thought.

Problem 1. Find a solution to the following problem.

$u_{tt} = u_{xx}$	0 < x < 1, t > 0
$u(x,0) = g(x), u_t(x,0) = 0$	$0 \le x \le 1,$
$u(0,t) = 0, u_x(1,t) = 0$	$t \ge 0,$

where g is smooth and g''(0) = 0.

Hint: Reflect u(x,t) and g(x) to be defined on the entire real line.

Problem 2. Let Ω be an open bounded smooth domain in \mathbb{R}^n . Show that a smooth solution to the following Cauchy-Dirichlet problem is unique.

$u_{tt} = \Delta u$	$x\in\Omega,t>0$
$u(x,0) = g(x), u_t(x,0) = h(x)$	$x\in\overline{\Omega},$
u(x,t) = f(x)	$x\in\partial\Omega,t\geq0,$

where f, g, h are smooth functions.

Hint: Use the energy.

Problem 3. Given smooth functions g, h, solve the following problem.

$u_{tt} - u_{tx} - 2u_{xx} = 0$	$x\in \mathbb{R}, t>0$
u(x,0) = g(x)	$x \in \mathbb{R},$
$u_t(x,0) = h(x)$	$x \in \mathbb{R}.$

Hint: Use the factorization $(\partial_t - 2\partial_x)(\partial_t + \partial_x)$ and modify the d'Alembert formula.

Problem 4. (a) Let $u : \mathbb{R} \times [0, +\infty) \to \mathbb{R}$ be a solution to the global Cauchy problem

$$u_{tt} = u_{xx} \qquad x \in \mathbb{R}, t \ge 0$$

$$u(x,0) = g(x), u_t(x,0) = h(x) \qquad x \in \mathbb{R},$$

where g, h are smooth. Suppose that there exists some large constant R such that g(x) = h(x) = 0 for $|x| \ge R$. Show that there exists some large constant T depending on R such that

(*)
$$\int_{\mathbb{R}} |u_t(x,t)|^2 dx = \int_{\mathbb{R}} |u_x(x,t)|^2 dx,$$

holds for $t \geq T$.

(b) Give an example of a solution to the wave equation on the bounded domain $(x,t) \in [0,L] \times [0,+\infty)$ such that it has constant Dirichlet data and does not satisfies (*).

Hint: Use the d'Alembert formula.