18.152 PROBLEM SET 5

due April 29th 10:00 am.
You can collaborate with other students when working on problems. However, you should write the solutions using your own words and thought.

Problem 1. Find a solution to the following problem.

$$
\begin{array}{ll}
u_{t t}=u_{x x} & 0<x<1, t>0 \\
u(x, 0)=g(x), u_{t}(x, 0)=0 & 0 \leq x \leq 1, \\
u(0, t)=0, u_{x}(1, t)=0 & t \geq 0,
\end{array}
$$

where g is smooth and $g^{\prime \prime}(0)=0$.
Hint: Reflect $u(x, t)$ and $g(x)$ to be defined on the entire real line.

Problem 2. Let Ω be an open bounded smooth domain in \mathbb{R}^{n}. Show that a smooth solution to the following Cauchy-Dirichlet problem is unique.

$$
\begin{array}{ll}
u_{t t}=\Delta u & x \in \Omega, t>0 \\
u(x, 0)=g(x), u_{t}(x, 0)=h(x) & x \in \bar{\Omega}, \\
u(x, t)=f(x) & x \in \partial \Omega, t \geq 0
\end{array}
$$

where f, g, h are smooth functions.
Hint: Use the energy.

Problem 3. Given smooth functions g, h, solve the following problem.

$$
\begin{array}{ll}
u_{t t}-u_{t x}-2 u_{x x}=0 & x \in \mathbb{R}, t>0 \\
u(x, 0)=g(x) & x \in \mathbb{R}, \\
u_{t}(x, 0)=h(x) & x \in \mathbb{R} .
\end{array}
$$

Hint: Use the factorization $\left(\partial_{t}-2 \partial_{x}\right)\left(\partial_{t}+\partial_{x}\right)$ and modify the d'Alembert formula.

Problem 4. (a) Let $u: \mathbb{R} \times[0,+\infty) \rightarrow \mathbb{R}$ be a solution to the global Cauchy problem

$$
\begin{array}{ll}
u_{t t}=u_{x x} & x \in \mathbb{R}, t \geq 0 \\
u(x, 0)=g(x), u_{t}(x, 0)=h(x) & x \in \mathbb{R},
\end{array}
$$

where g, h are smooth. Suppose that there exists some large constant R such that $g(x)=h(x)=0$ for $|x| \geq R$. Show that there exists some large constant T depending on R such that

$$
\begin{equation*}
\int_{\mathbb{R}}\left|u_{t}(x, t)\right|^{2} d x=\int_{\mathbb{R}}\left|u_{x}(x, t)\right|^{2} d x \tag{*}
\end{equation*}
$$

holds for $t \geq T$.
(b) Give an example of a solution to the wave equation on the bounded domain $(x, t) \in[0, L] \times[0,+\infty)$ such that it has constant Dirichlet data and does not satisfies $\left(^{*}\right)$.

Hint: Use the d'Alembert formula.

